
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2019

Efficient state estimation via inference on a probabilistic graphical Efficient state estimation via inference on a probabilistic graphical

model model

Luke David Myers
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

 Part of the Electrical and Electronics Commons

Recommended Citation Recommended Citation
Myers, Luke David, "Efficient state estimation via inference on a probabilistic graphical model" (2019).
Graduate Theses and Dissertations. 17520.
https://lib.dr.iastate.edu/etd/17520

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and
Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please
contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/etd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F17520&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Fetd%2F17520&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/17520?utm_source=lib.dr.iastate.edu%2Fetd%2F17520&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Efficient state estimation via inference on a probabilistic graphical model

by

Luke David Myers

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Electrical Engineering (Electric Power and Energy Systems)

Program of Study Committee:
Daji Qiao, Major Professor

Zhenqiang Gong
Venkataramana Ajjarapu

The student author, whose presentation of the scholarship herein was approved by the program of study
committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis

is globally accessible and will not permit alterations after a degree is conferred.

Iowa State University

Ames, Iowa

2019

Copyright c© Luke David Myers, 2019. All rights reserved.

www.manaraa.com

ii

DEDICATION

I would like to dedicate this thesis to my father, who has always supported and encouraged me both in

my educational endeavors as well as in every other area of my life.

www.manaraa.com

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ACKNOWLEDGMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

1.1 Background . 1

1.2 Our Contributions . 2

1.3 Organization . 3

1.4 My Own Contributions . 3

CHAPTER 2. STATE ESTIMATION . 4

2.1 State Estimation On DC And AC Flow Models . 4

2.2 Existing SE Solvers . 6

2.3 A 3-bus Example . 7

2.4 Discussion . 9

CHAPTER 3. PROBABILISTIC GRAPHICAL MODEL . 10

3.1 Markov Networks, Node Potential, And Edge Potential . 10

3.2 Inference Via Belief Propagation . 11

CHAPTER 4. STATE ESTIMATION: A PGM PERSPECTIVE . 13

4.1 Modeling A Power Grid As A Graph . 14

4.2 Transforming SE To PGM Problem . 14

www.manaraa.com

iv

4.2.1 Transforming DC SE To Inference Problem On A PGM 15

4.2.2 Transforming AC SE To Inference Problem On A PGM 17

4.2.3 Example . 17

4.3 Solving The PGM Problem Via Gaussian Belief Propagation 19

4.3.1 Gaussian Belief Propagation . 19

4.3.2 Speeding Up Message-Passing In GBP . 20

4.3.3 Example . 22

4.4 Existing SE Solvers Versus Our Proposed PGM/GBP Solver 22

4.5 Complexity Analysis . 23

CHAPTER 5. PERFORMANCE EVALUATION: PGM . 25

5.1 Experimental Setup . 25

5.2 AC SE Versus AC PGM: State Estimates . 25

5.3 AC SE Versus AC PGM: Running Time . 26

CHAPTER 6. APPLICATION: DEFENSE AGAINST FALSE DATA INJECTION ATTACKS . . . 28

6.1 State Estimation (SE) And Bad Data Detection (BDD) . 28

6.2 False Data Injection Attacks (FDIAs) . 29

6.3 Defense Against FDIAs . 32

6.4 AC-Based Defense . 32

CHAPTER 7. PERFORMANCE EVALUATION: DEFENSE AGAINST FDIA 36

7.1 Experimental Setup . 36

7.2 Susceptibility Of DC SE To FDIA . 37

7.2.1 Successful Attack Ratio When Attacker Has Full Access To All Meters 37

7.2.2 Meters Needed For A Successful Attack . 38

7.3 AC SE/PGM Defense Against FDIA . 38

CHAPTER 8. CONCLUSION . 41

REFERENCES . 42

www.manaraa.com

v

APPENDIX A. MATLAB METER MEASUREMENT GENERATION 45

APPENDIX B. MATLAB CODE FOR DC SE . 50

www.manaraa.com

vi

LIST OF TABLES

Page

Table 2.1 Terms and notations used in Chapters 2 to 4 . 5

Table 6.1 Terms and notations used in Chapter 6 . 28

Table 6.2 False data injection attack types . 30

www.manaraa.com

vii

LIST OF FIGURES

Page

Figure 2.1 3-bus power grid example . 7

Figure 3.1 Sum-product rule . 11

Figure 3.2 Product rule . 12

Figure 4.1 Flowchart of existing SE solvers . 13

Figure 4.2 Flowchart of our proposed PGM method . 13

Figure 4.3 Graph representation of 3-bus power grid example and corresponding PGM graph . 14

Figure 5.1 Comparison of state estimates for AC SE and AC PGM 26

Figure 5.2 Comparison of running time for AC SE and AC PGM 27

Figure 7.1 Successful attack ratio versus number of compromised states 38

Figure 7.2 Fraction of attacked meters versus number of compromised states 39

Figure 7.3 Weighted squared error for DC SE and PGM versus AC SE and PGM under FDIA . 40

www.manaraa.com

viii

ACKNOWLEDGMENTS

I want to express my gratitude and thanks to those who have assisted me in conducting the research

for this thesis during my graduate studies. First of all, I would like to thank my Major Professor Dr. Daji

Qiao for all of his guidance, motivation, and support throughout this research. I would also like to thank

fellow graduate student Binghui Wang for his work in developing the probabilistic graphical model and

indispensable contributions to the research behind this thesis. Additionally, I want to thank my committee

members Dr. Zhenqiang Gong and Dr. Venkataramana Ajjarapu, as well as Dr. Guan, Grant Johnson,

and Benjamin Blakely, for their help and oversight throughout this research. Finally, I would like to thank

Argonne National Laboratory and Ames Laboratory for their financial support of this research during my

time as a graduate student.

www.manaraa.com

ix

ABSTRACT

This thesis presents a unique and efficient solver to the state estimation (SE) problem for the power grid,

based on probabilistic graphical models (PGMs). SE is a method of estimating the varying state values of

voltage magnitude and phase at every bus within a power grid based on meter measurements. However,

existing SE solvers are notorious for their computational inefficiency to calculate the matrix inverse, and

hence slow convergence to produce the final state estimates. The proposed PGM-based solver estimates the

state values from a different perspective. Instead of calculating the matrix inverse directly, it models the

power grid as a PGM, and then assigns potentials to nodes and edges of the PGM, based on the physical

constraints of the power grid. This way, the original SE problem is transformed into an equivalent proba-

bilistic inference problem on the PGM, for which two efficient algorithms are proposed based on Gaussian

belief propagation (GBP). The equivalence between the proposed PGM-based solver and existing SE solvers

is shown in terms of state estimates, and it is experimentally demonstrated that this new method converges

much faster than existing solvers.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

1.1 Background

Power grid is a complex energy delivery system comprised of a large number of individual components

and geographically dispersed communication systems. State estimation (SE) is a method of estimating the

varying state values of voltage magnitude and phase at every bus of a power grid. This is done by taking

a series of meter measurements of key parameters across the network and relaying those measurements to

the control center. These meter measurements are then used to estimate the voltage states based upon their

physical relations.

SE can be classified as DC SE and AC SE. AC SE estimates state values by solving a system of (complex)

nonlinear equations (considering both real and reactive power), while DC SE utilizes a linear approximation

of the nonlinear real power flow equations in AC SE to estimate the state values (while neglecting reactive

power) [1, 2]. Existing solvers to both DC SE and AC SE involve the calculation of the inverse of a

matrix. Direct matrix inverse methods (e.g., Gaussian elimination algorithm) are computationally infeasible

if the scale of the power grid (and hence the size of the matrix) is large. Iterative methods, such as the

Jacobi iterative method and the Gauss–Seidel iterative method, can avoid the calculation of matrix inverse.

However, one major issue with the iterative methods [3] is that they may require a very large number of

iterations and converge slowly or even cannot converge. To address this issue, we propose to solve SE from

a different probabilistic graphical model (PGM) perspective, which converges much faster and thus is a

much more efficient solution to the SE problem.

PGM [4] is a technique that offers a compact graph-based representation of joint probability distribu-

tions, and exploits conditional independencies among the random variables. PGM has been widely used in

many research areas such as machine learning, signal processing, computer vision, and data mining. To the

best of our knowledge, we are the first ones to leverage PGM to improve the efficiency of state estimation.

www.manaraa.com

2

The key idea of our proposed PGM solver to the SE problem is to represent a power grid as a PGM,

and then transform the original SE problem into an equivalent probabilistic inference problem on the PGM.

By doing so, the physical constraints and relations between components in the power grid are considered

explicitly in the PGM and during the computation. Moreover, by utilizing the Gaussian belief propagation

(GBP) algorithm to perform the probabilistic inference, each node in the PGM takes messages from all of its

neighbor nodes at each iteration, thus progressing more toward the final estimates at each iteration. Hence,

our proposed PGM solver requires much fewer iterations to converge.

Given the fast converging property of the proposed PGM solver, it has many potential applications.

For example, it can be used, together with the AC flow model, as an efficient and practical defense to the

well-known and well-studied false data injection attack (FDIA) [1] against a power grid.

1.2 Our Contributions

The contributions of this thesis include:

• We propose a novel framework to perform SE based on probabilistic graphical models (PGMs).

• We design two Gaussian belief propagation (GBP) algorithms to perform the probabilistic infer-

ence on our PGM.

• We prove and demonstrate the equivalence between existing SE solvers and the proposed PGM

solver in terms of state estimates.

• We demonstrate experimentally that the proposed PGM solver requires a much shorter running

time than standard SE solvers, particularly when the power grid is large.

• As an example application of the proposed PGM solver, we show that it can effectively and quickly

detect the FDIA, when used together with the AC flow model.

• All experiments are conducted with the MATPOWER simulator [5]. Codes are developed to per-

form DC SE and the proposed PGM solver, and to produce the meter measurements, for a variety

of power grid models.

www.manaraa.com

3

1.3 Organization

The rest of this thesis is organized as follows. In Chapter 2, we provide a brief overview of SE on both

DC and AC flow models, existing methods to solve SE, and FDIA against DC SE. In Chapter 3, we show

the background of probabilistic graphical model (PGM) and the inference algorithm. Chapter 4 details our

proposed PGM and designs two inference algorithms to solve SE. Chapter 5 evaluates our proposed method

on a series of experiments that compare PGM with standard SE. Chapter 6 explores the applicability of AC

PGM as a means of defense against FDIAs. Chapter 7 evaluates the resilience of PGM to FDIAs through

a number of experiments. Finally, the thesis is concluded in Chapter 8. Appendices A and B include

MATLAB code that was generated to perform some of the experiments.

1.4 My Own Contributions

Since I am not the sole individual responsible for the research for, work on, and composition of all

the material presented in this thesis, it is necessary that I identify my own personal contributions before

moving forward. I am largely responsible for most of the background research and work on standard DC

SE, AC SE, and FDIA reflected in Chapters 1, 2, and 6. I also conducted all of the experiments detailed in

Chapters 5 and 7 (with the exception of running the PGM tests in Chapter 5). The MATLAB code included

in Appendices A and B are also contributions for which I am solely responsible. In addition to this, I am

responsible for having edited all of the material presented in this thesis.

Chapters 3–4, which detail our probabilistic graphical model and its application to the power grid for

state estimation, is almost exclusively the work of Binghui Wang, who is the only other main contributor

to the content contained in this thesis. Where appropriate, I use singular personal pronouns throughout this

thesis to refer to myself as the main contributor. The use of plural pronouns outside of Chapters 3–4 are

used to indicate joint contribution on the part of both Binghui Wang and myself. Other contributors to the

work behind this thesis are Dr. Daji Qiao and Dr. Zhenqiang Gong, who oversaw my research process and

provided me with invaluable guidance and direction. It should also be noted that we have submitted a paper

for publication in IEEE Transactions on Smart Grid that includes much of the material presented in this

thesis.

www.manaraa.com

4

CHAPTER 2. STATE ESTIMATION

2.1 State Estimation On DC And AC Flow Models

State estimation (SE) is a method of estimating state variables of a power grid so that operators can

monitor them from the control center. The state variables of interest are the voltage magnitude, |u|, and

phase, θu, at every bus in the network. In order to perform SE for a given power system, a set of meter

measurements need to be taken of various components across the network and reported to the control center.

These meter measurements can then be used along with topology information of the grid to estimate the

state variables. Table 2.1 summarizes the terms and notations used in Chapters 2 to 4.

When performing SE, one of the generator buses in the power system is selected to be the slack or

reference bus, at which the voltage phase is defined as θu = 0 radians. This leaves 2N− 1 unknown states

to be estimated, where N is the number of buses in the system. The task of SE is to estimate these 2N− 1

states, given the meter measurements and the network topology of the power system. At least 2N−1 meter

measurements are required to estimate 2N−1 states.

Let m represent the number of states (m = 2N − 1) and n represent the number of meter measure-

ments (n > m) utilized to perform state estimation. Moreover, we denote the m state variables as x =

[x1,x2, . . . ,xm]
T , n meter measurements as z = [z1,z1, · · · ,zn]

T , and the meter measurement errors as e =

[e1,e1, · · · ,en]
T . Then, the relation between x, z, and e is encoded in the following system of equations:

z = h(x)+ e, (2.1)

where h(x) = [h1(x1, · · · ,xm),h2(x1, · · · ,xm), · · · ,hn(x1, · · · ,xm)]
T is an n-dim vector function that estab-

lishes dependencies between x and z. Each meter measurement error ei is assumed to be Gaussian-distributed

with zero mean and variance σ2, i.e., ei ∼N (0,σ2
i).

www.manaraa.com

5

Table 2.1 Terms and notations used in Chapters 2 to 4

Symbol Definition
SE State estimation

AC SE Nonlinear state estimation
DC SE Linear state estimation
|u| Voltage magnitude
θu Voltage phase
N Number of buses
m Number of states
n Number of measurements
x State variables
z Meter measurements
e Meter measurement errors

J(x) Objective function
Λ Matrix of meter measurement error variances
H Jacobian matrix
x̃ Augmented state variables
z̃ Augmented meter measurements
H̃ Augmented Jacobian matrix

φṽi(x̃i) Node potential
ψṽi,ṽ j(x̃i, x̃ j) Edge potential

The goal of SE is to estimate state variables that best fit Eq. (2.1). Specifically, SE aims to minimize the

following objective function:

J(x) =
1
2

n

∑
i=1

(
zi−hi(x)

σi

)2

=
1
2
(z−h(x))T

Λ(z−h(x)), (2.2)

where Λ is a diagonal matrix whose elements are reciprocals of the variances of meter measurement errors,

i.e., Λ = diag(σ−2
1 ,σ−2

2 , · · · ,σ−2
n). Moreover, a matrix H(x) that contains the derivative of h(x) with respect

to each state variable xi is needed. Specifically, it is an n×m Jacobian matrix with full column rank, as

follows:

H(x) =



∂h1(x)
∂x1

∂h1(x)
∂x2

· · · ∂h1(x)
∂xm

∂h2(x)
∂x1

∂h2(x)
∂x2

· · · ∂hn(x)
∂xm

· · ·
∂hn(x)

∂x1

∂hn(x)
∂x2

· · · ∂hn(x)
∂xm


. (2.3)

www.manaraa.com

6

If h(x) relates state variables to meter measurements linearly, i.e., h(x) = Hx with a constant matrix H,

the above SE problem is called DC SE. In contrast, if h(x) relates state variables to meter measurements

nonlinearly, the above SE problem is called AC SE.

2.2 Existing SE Solvers

Existing solutions to SE are based on the fact that, at the minimum of J(x), the first-order optimality

conditions have to be satisfied. That is,

g(x) =
∂J(x)

∂x
=−HT (x)Λ(z−h(x)) = 0. (2.4)

In DC SE, the closed-form solution to Eq. (2.4) can be derived, which is in the following form:

x = (HT
ΛH)−1HT

Λz, (2.5)

In AC SE, since h(x) is a nonlinear function of state variables x, a closed-form solution to Eq. (2.4) can-

not be obtained. In practice, Newton-type methods are often used to iteratively estimate the state variables.

Specifically, the Newton method performs a Taylor series expansion of g(x) around x(k), and neglects the

higher-order terms. That is,

g(x(k)+∆x(k)) = g(x(k))+G(x(k))∆x(k) = 0, (2.6)

where

G(x(k)) =
∂g(x(k))

∂x
= H(x(k))T

ΛH(x(k)). (2.7)

Then, with an initial setting x(0), the Newton method iteratively updates x(k) for k = 1,2, · · · , as follows:

∆x(k) =−(G(x(k)))−1g(x(k))

=
(
H(x(k))T

ΛH(x(k))
)−1H(x(k))T

Λ(z−h(x(k))); (2.8)

x(k+1) = x(k)+∆x(k). (2.9)

www.manaraa.com

7

Finally, the iterative process is terminated when the `∞-norm of ∆x(k) is less than a predefined threshold ε ,

or when the process reaches a predefined maximal number of iterations T .

2.3 A 3-bus Example

I will now use a simple 3-bus power grid model (which is taken from problem 9.1 in [6]) to illustrate

the SE process. The 3-bus model is shown in Fig. 2.1. The available information for the 3-bus model

includes the voltage magnitude at each bus (1 per unit or 1pu), the real power measurements on each of

the three transmission lines connecting the buses: z = [0.6pu,0.04pu,0.405pu]T , the standard deviation of

the meter measurements: σ = [0.02pu,0.01pu,0.002pu]T , and the susceptance on each of the transmission

lines: b12 = 5pu, b10 = 2.5pu, b20 = 4pu.

Figure 2.1 An example 3-bus power grid with 3 meters (M12,M10,M20) measuring the real power flow
across the transmission lines. The line susceptances are b12 = 5pu, b10 = 2.5pu, and b20 = 4pu,
respectively, with a 100 MVA base. Two states, |u| and θ , are present at each of the three buses.
In this example, all the voltage magnitudes are assumed to be 1pu. With Bus 0 being the slack
bus, i.e., θ0 = 0, we have θ1 and θ2 as the unknown states to be estimated.

www.manaraa.com

8

The unknown states to be estimated are θ1 (the voltage phase at Bus 1) and θ2 (the voltage phase at Bus

2). For AC SE, we use the nonlinear real power flow equations, as follows:

h1(x) = P12 = b12 sin(θ1−θ2) = 5sin(θ1−θ2);

h2(x) = P10 = b10 sin(θ1−θ0) = 2.5sinθ1;

h3(x) = P20 = b20 sin(θ0−θ2) =−4sinθ2.

Since h(x) is made up of nonlinear equations, the Jacobian is a function of the unknown states:

H(x) =


5cos(θ1−θ2) −5cos(θ1−θ2)

2.5cos(θ1) 0

0 −4cos(θ2)

 .
For DC SE, we use the linear approximations of the above real power flow equations, as follows:

h1(x)≈ 5θ1−5θ2;

h2(x)≈ 2.5θ1;

h3(x)≈−4θ2.

As a result, the Jacobian becomes a constant matrix:

H(x) = H =


5 −5

2.5 0

0 −4

 .

With Λ = diag(0.02−2,0.01−2,0.002−2), we have everything needed to obtain the state estimates, x̂.

Performing AC SE with Eq. (2.8), we obtain the estimates of θ1 and θ2 as 0.0174 and −0.1014 radians,

respectively. Performing DC SE with Eq. (2.5), we obtain the estimates of θ1 and θ2 as 0.0174 and−0.1013

radians, respectively. Since this example network is a very simple 3-bus system, the results of AC SE and

DC SE are very close to each other.

www.manaraa.com

9

2.4 Discussion

Note that both Eq. (2.5) and Eq. (2.8) involve the calculation of the inverse of a matrix. As noted

previously, direct matrix inverse methods are computationally infeasible if the matrix size is large, while

iterative methods may require a very large number of iterations and converge slowly or even cannot converge.

To address this issue, we propose a novel method to solve the SE problem from a different probabilistic

graphical model (PGM) perspective, which we will show converges much faster than existing solvers.

www.manaraa.com

10

CHAPTER 3. PROBABILISTIC GRAPHICAL MODEL

Probabilistic graphical model (PGM) [4] combines probability theory and graph theory. It offers a com-

pact graph-based representation of joint probability distributions, and exploits conditional independencies

among the random variables. Conditional independence can alleviate the computational burden. PGM has

been widely used in various research areas such as computer vision [7, 8], speech processing [9], time-

series and sequential data modeling [10], cognitive science [11], bioinformatics [12], signal processing [13],

communications and error-correcting coding theory [14], and in the area of artificial intelligence in general.

The framework of PGM could provide general techniques for inference (e.g., sum-product message-

passing algorithm, also known as belief propagation) [15] and learning [4]. Two popular representations of

graphical models are Markov networks based on undirected graphs (also known as Markov random fields),

and Bayesian networks based on directed graphs (also known as belief networks). In this work, we mainly

focus on Markov networks because the graphical representation of a power grid is undirected.

3.1 Markov Networks, Node Potential, And Edge Potential

Markov networks are represented by undirected graphs. Given an undirected graph G̃ = (Ṽ , Ẽ), where

Ṽ is a set of nodes and Ẽ is a set of edges. Each node ṽi ∈ Ṽ is associated with a random variable x̃i. Markov

networks specify a node potential φṽi(x̃i) (also known as “evidence”) for each node ṽi, and specify an edge

potential ψṽi,ṽ j(x̃i, x̃ j) (also known as “compatibility functions”) for each edge (ṽi, ṽ j) ∈ Ẽ. Then, Markov

networks define a joint probability distribution over all random variables as follows:

p(x̃) = p(x1, · · · ,x|Ṽ |) =
1
Z ∏

ṽi∈Ṽ

φṽi(x̃i) ∏
(ṽi,ṽ j)∈Ẽ

ψṽi,ṽ j(x̃i, x̃ j), (3.1)

where Z = ∑x̃i ∏ṽi∈Ṽ φṽi(x̃i)∏(ṽi,ṽ j)∈Ẽ ψṽi,ṽ j(x̃i, x̃ j) is called the partition function, which is used to normalize

the probabilities.

www.manaraa.com

11

Nevertheless, performing inference for each variable, i.e., calculating the marginal distribution of each

variable, involves a summation of exponential terms for discrete variables, or an integration for continuous

variables. This renders the direct computation intractable for a large number of variables. Fortunately, the

underlying graph structure, and thereby the introduced factorization of the joint probability, can be exploited

via belief propagation [15].

3.2 Inference Via Belief Propagation

Belief propagation (BP), also called sum-product, is a message-passing algorithm to perform inference

on graphical models. BP is originally derived for exact inference in trees [15], and then generalized to a

general graph even with loops. Specifically, BP functions by passing real-valued messages across edges in

the graph and is comprised of two computational rules: sum-product rule and product rule.

Sum-product rule: Messages mṽi→ṽ j(x̃ j) are sent on each edge (ṽi, ṽ j) ∈ Ẽ from ṽi to ṽ j. If x̃ j is a discrete

random variable, the messages are updated as follows:

mṽi→ṽ j(x̃ j) = ∑
x̃i

ψṽi,ṽ j(x̃i, x̃ j)φṽi(x̃i) ∏
vk∈N(ṽi)\ṽ j

mvk→ṽi(x̃i), (3.2)

where N(ṽi) denotes the neighbor nodes of ṽi, and N(ṽi)\ṽ j means node ṽ j is excluded from the neighbor

nodes. If x̃ j is a continuous random variable, the messages are updated as follows:

mṽi→ṽ j(x̃ j) =
∫

x̃i

ψṽi,ṽ j(x̃i, x̃ j)φṽi(x̃i) ∏
vk∈N(ṽi)\ṽ j

mvk→ṽi(x̃i)dxi. (3.3)

Fig. 3.1 visualizes the sum-product rule.

𝑣"

𝑣#

𝑣$

𝑣%

𝒎𝒗𝒊→𝒗𝒋(𝒙𝒋)
𝑣.

𝛟01 (𝑥")
𝞿01,05(𝑥", 𝑥.)

…
𝒎𝒗𝒕→𝒗𝒊(𝒙𝒊)

𝒎𝒗𝒔→𝒗𝒊(𝒙𝒊)

𝒎𝒗𝒌→𝒗𝒊(𝒙𝒊)

Figure 3.1 Sum-product rule

www.manaraa.com

12

Product rule: If the Markov network does not have a loop, the sum-product algorithm is exact [15],

meaning that, if we use the sum-product algorithm, the marginals (also known as beliefs) p(x̃i) obtained via

the following product rule are guaranteed to converge to the true marginals:

p(x̃i) = φṽi(x̃i) ∏
k∈N(ṽi)

mvk→ṽi(x̃i). (3.4)

Fig. 3.2 visualizes the product rule.

𝑣"

𝑣#

𝑣$

𝑣%

𝒎𝒗𝒊→𝒗𝒋(𝒙𝒋)
𝑣.

𝛟01 (𝑥")…
𝒎𝒗𝒕→𝒗𝒊(𝒙𝒊)

𝒎𝒗𝒔→𝒗𝒊(𝒙𝒊)

𝒎𝒗𝒌→𝒗𝒊(𝒙𝒊)

Figure 3.2 Product rule

www.manaraa.com

13

CHAPTER 4. STATE ESTIMATION: A PGM PERSPECTIVE

In this chapter, we describe our proposed approach to perform SE from a unique perspective, based on

PGMs. Comparing with existing SE solvers (shown in Fig. 4.1), our approach consists of the following three

steps (shown in Fig. 4.2).

Iterative
Methods

(e.g., Jacobi)

h(x)

z

Ʌ

Estimated
value of x

Figure 4.1 Flowchart of existing SE solvers

Graph Construction

SE to PGM
Transformation

Solving
PGM

via GBP

Graph

PGM

h(x)

z

Ʌ

Marginal
distribution
of x

Figure 4.2 Flowchart of our proposed PGM method

First, we model the power grid as an undirected graph (Section 4.1). Then, we contruct a PGM and

assign potentials to nodes and edges of the PGM, based on the physical constraints of the power grid,

which, in turn, transforms the original state estimation problem into an equivalent inference problem on the

PGM (Section 4.2). Finally, we apply Gaussian Belief Propagation (GBP) and design two GBP algorithms

to infer the state variables of our PGM, which produce the final state estimation results (Section 4.3).

www.manaraa.com

14

4.1 Modeling A Power Grid As A Graph

We represent the power grid as an undirected graph G = (V,E). Each node vi ∈ V represents a bus.

Each edge in E represents a power transmission line between two buses. The weight of each edge is the

impedance of the corresponding power transmission line. For each node vi ∈V , a node v j (6= vi) is a neighbor

of vi if and only if there is an edge between them. The power grid state at a node is determined by (1) the

states of its neighbors, and (2) the impedance of the transmission lines between the node and its neighbors.

Therefore, we can constrain each node in the power grid graph with local equations, which describe the

relation between its state and its neighbors’ states. Subsequently, we can use a set of local equations to

represent the constraints for the entire power grid, which are given in Eq. (2.1).

Throughout this section, we will use the same example 3-bus power system introduced in Section 2.3

and shown in Fig. 2.1, to illustrate our proposed PGM method, step by step. In the first step, this 3-bus

power system is represented by the graph in Fig. 4.3a.

(a) (b)

Figure 4.3 (a) Graph representation of the example 3-bus power system. (b) The corresponding PGM
graph.

4.2 Transforming SE To PGM Problem

The second step of our approach is to transform SE to an inference problem on a PGM. Next, we first

describe how to do it for DC SE, and then we generalize it to AC SE.

www.manaraa.com

15

4.2.1 Transforming DC SE To Inference Problem On A PGM

The goal of DC SE is to solve Eq. (2.5) to produce an estimation of state variables x. When leveraging

PGM for probabilistic inference, we require H to be a square matrix. However, H usually is not square in

power grids. To address this issue, we adopt the following two steps:

• Step I: We transform Eq. (2.5) to a more concise form. Specifically, we denote Ĥ = Λ1/2H and

ẑ = Λ1/2z, where Λ1/2 = diag(σ−1
1 ,σ−1

2 , · · · ,σ−1
n). Then, Eq. (2.5) becomes:

x =
(
ĤT Ĥ

)−1ĤT ẑ. (4.1)

• Step II: We construct an augmented (m+n)× (m+n) matrix H̃ for Ĥ as:

H̃ =

 Im×m ĤT

Ĥ −λ In×n

 , (4.2)

where Im×m and In×n are an m×m identity matrix and an n× n identity matrix, respectively. λ is a

small constant. Similarly, we define an augmented (m+ n)-dim vector of state variables x̃ = [x;y],

where y is an n-dim auxiliary variable vector, and an augmented (m+ n)-dim measurement vector

z̃ = [0m; ẑ], where 0m is an m-dim zero vector.

Then, we have the following theorem.

Theorem 1. As λ → 0, the first m elements of the solution x̃ to z̃ = H̃x̃ are equivalent to the solution x to

Eq. (2.5) - the original SE problem.

Proof. We split z̃ = H̃x̃ into the following two equations:

0m = x+ ĤT y; (4.3)

ẑ = Ĥx−λy. (4.4)

Then, by combining Eqs. (4.3) and (4.4), we have:

x =
(
ĤT Ĥ+λ Im×m

)−1ĤT ẑ, (4.5)

www.manaraa.com

16

which is the first m elements of x̃. When λ → 0, we then have Eq. (4.1), which is exactly the solution to

Eq. (2.5).

Given Theorem 1, we can translate the original SE problem, whose goal is to solve z̃ = H̃x̃ determinis-

tically, to an equivalent probabilistic inference problem on a PGM. To be specific, we first convert z̃ = H̃x̃

to an optimization problem as follows:

H̃x̃ = z̃⇐⇒ H̃x̃− z̃ = 0 (4.6)

⇐⇒min
x̃

(1
2

x̃T H̃x̃− z̃T x̃
)

(4.7)

⇐⇒max
x̃

(
− 1

2
x̃H̃x̃+ z̃T x̃

)
, (4.8)

where the equivalence between Eq. (4.7) and Eq. (4.6) is obtained by setting the derivative of the term in

Eq. (4.7) with respect to x̃ to be zero. Then, we can obtain the solution to Eq. (2.5) via maximizing the

following joint Gaussian probability density function (pdf):

p(x̃) = exp
(
− 1

2
x̃T H̃x̃+ z̃T x̃

)
. (4.9)

We now can use a Markov network to characterize the joint Guassian pdf. Specifically, we begin by

constructing an undirected graph G̃ = (Ṽ , Ẽ), where Ṽ is a set of nodes in one-to-one correspondence with

the augmented state variables x̃ = [x;y], and Ẽ is a set of undirected edges determined by the non-zero

entries of the square matrix H̃. Then, we factorize the joint Gaussian pdf into the following form:

p(x̃) =
1
Z ∏

ṽi∈Ṽ

φṽi(x̃i) ∏
(ṽi,ṽ j)∈Ẽ

ψṽi,ṽ j(x̃i, x̃ j), (4.10)

where

Z = ∑
x̃i

∏
ṽi∈Ṽ

φṽi(x̃i) ∏
(ṽi,ṽ j)∈Ẽ

ψṽi,ṽ j(x̃i, x̃ j). (4.11)

φṽi and ψṽi,ṽ j are the node potential and edge potential associated with the undirected graph G̃, which are

defined as:

• node potential: φṽi(x̃i) = exp
(
− 1

2 H̃iix̃2
i + z̃ix̃i

)
;

www.manaraa.com

17

• edge potential: ψṽi,ṽ j(x̃i, x̃ j) = exp
(
− 1

2 x̃iH̃i jx̃ j
)
.

With the above analysis, we have the following theorem.

Theorem 2. The solution x̃ to z̃ = H̃x̃ is equal to the inference of the vector of marginal means µ over the

graph G̃ with the associated joint Gaussian pdf p(x̃)∼N (µ,H̃−1).

The proof of Theorem 2 is provided in [3]. Now, with Theorem 1 and Theorem 2, we have completed

the transformation from the original DC SE problem to the problem of probabilistic inference on a PGM.

4.2.2 Transforming AC SE To Inference Problem On A PGM

The goal of AC SE is to solve Eq. (2.4) to produce an estimation of state variables x. However, since

h(x) is a nonlinear function of x, we cannot obtain an analytic solution for h(x) directly, unlike we have done

for DC SE. Therefore, in practice, Newton-type methods are often applied to iteratively estimate the state

variables. At each iteration k, we need to calculate Eq. (2.8) to update ∆x(k). For the ease of description, we

rewrite Eq. (2.8) by omitting the iteration index, as follows:

∆x =
(
HT

ΛH
)−1HT

Λ(z−h(x)). (4.12)

Comparing Eq. (4.12) with Eq. (2.5), we observe that the only difference is, Eq. (4.12) uses the term z−h(x),

while Eq. (2.5) uses the term z. Therefore, we can transform the original AC SE problem to the problem of

probabilistic inference on a PGM, by simply denoting ẑ = Λ1/2(z−h(x)) and then following the same steps

as in Section 4.2.1 for DC SE.

4.2.3 Example

Now, we continue with the 3-bus example to illustrate how to construct a PGM. In this example, since

m = 2 and n = 3, we introduce three auxiliary state variables: y1 for transmission line between Bus 1 and

Bus 2, y2 for transmission line between Bus 1 and Bus 0, and y3 for transmission line between Bus 2 and

Bus 0, as shown in Fig. 4.3a. As a result, the augmented state variables are:

x̃ = [x;y] = [x1;x2;y1;y2;y3], (4.13)

www.manaraa.com

18

the augmented meter measurements are:

z̃ = [02;Λ
1/2ẑ] = [0;0;30;4;202.5], (4.14)

and

H̃ =

 I2×2 ĤT

Ĥ −λ I3×3



=



1 0 250 250 0

0 1 −250 0 −2000

250 −250 −λ 0 0

250 0 0 −λ 0

0 −2000 0 0 −λ


. (4.15)

Each auxiliary state variable is represented as an additional node in the PGM, as shown in Fig. 4.3b. Since

y1 connects to and depends on θ1 and θ2, node ṽ3 (for y1) is connected to both ṽ1 (for θ1) and ṽ2 (for θ2) in

the PGM. Similarly, we connect ṽ4 (for y2) with ṽ1 (for θ1), and connect ṽ5 (for y3) with ṽ2 (for θ2). Since

Bus 0 is the slack bus, it does not have a corresponding node in the PGM.

The node potential of node ṽ1 in the PGM is defined as:

φṽ1(x̃1) = exp
(
−1

2
H̃1,1x̃2

1 + z̃1x̃1

)
= exp

(
−1

2
θ

2
1

)
. (4.16)

Similarly, we can obtain the node potentials of other nodes:

φṽ2(x̃2) = exp
(
− 1

2
θ

2
2), (4.17)

φṽ3(x̃3) = exp
(λ

2
y2

1 +30y1), (4.18)

φṽ4(x̃4) = exp
(λ

2
y2

2 +4y2), (4.19)

φṽ5(x̃5) = exp
(λ

2
y2

3 +202.5y3). (4.20)

www.manaraa.com

19

The edge potential of edge (ṽ1, ṽ3) is defined as:

ψṽ1,ṽ3(x̃1, x̃3) = exp
(
−1

2
θ1y150h11

)
= exp(−125θ1y1) . (4.21)

Similarly, we can obtain the edge potentials of other edges:

ψṽ1,ṽ4(x̃1, x̃4) = exp
(
−125θ1y2), (4.22)

ψṽ2,ṽ3(x̃2, x̃3) = exp
(
125θ2y1), (4.23)

ψṽ2,ṽ5(x̃2, x̃5) = exp
(
1000θ2y3). (4.24)

4.3 Solving The PGM Problem Via Gaussian Belief Propagation

The third step is to solve the probabilistic inference problem on the constructed PGM via belief propa-

gation.

4.3.1 Gaussian Belief Propagation

As nodes in our PGM are characterized by Gaussian random variables, the associated belief propagation

algorithm is also called Gaussian belief propagation (GBP) [3, 16]. As we have discussed in Section 3.2, for

the graph G̃ composed of node potentials φṽi(x̃i) and edge potentials ψṽi,ṽ j(x̃i, x̃ j), we have the sum-product

rule and product rule. With these two rules and the property that the product of Gaussian distributions is still

a Gaussian distribution, we have the exact form for each passing message as follows [16]:

mṽi→ṽ j(x̃ j) = N (µi j,P−1
i j), (4.25)

www.manaraa.com

20

where

Pi\ j = Pii + ∑
ṽk∈N(ṽi)\ṽ j

Pki; (4.26)

µi\ j = P−1
i\ j (Piiµii + ∑

ṽk∈N(ṽi)\ṽ j

Pkiµki; (4.27)

Pi j =−H̃2
i jP
−1
i\ j ; (4.28)

µi j =−P−1
i j H̃i jµi\ j. (4.29)

After several iterations of message passing, i.e., calculating Pi j and µi j until they converge with respect to

a small ε , we obtain the marginals of x̃i’s which are Gaussian random variables N (µi,P−1
i) with precision

and mean as follows:

P−1
i = (Pii + ∑

ṽk∈N(ṽi)

Pki)
−1; (4.30)

µi = P−1
i (Piiµii + ∑

ṽk∈N(ṽi)

Pkiµki). (4.31)

Finally, we obtain the solution to Eq. (2.5) as follows:

x = x̃[1 : m] = [µ1; µ2; · · · ; µm]. (4.32)

4.3.2 Speeding Up Message-Passing In GBP

Recently, it has been showed in [17, 18] that, when calculating the message mṽi→ṽ j(x̃ j) from node ṽi

to ṽ j, including the message mṽ j→ṽi(x̃i) from node ṽ j to ṽi can speed up the computation as the passing

www.manaraa.com

21

messages can be computed in parallel, while not sacrificing the performance. In doing so, we have:

P̂i = Pii + ∑
ṽk∈N(ṽi)

Pki; (4.33)

µ̂i = P̂−1
i (Piiµii + ∑

ṽk∈N(ṽi)

Pkiµki); (4.34)

Pi j =−H̃2
i jP̂
−1
i ; (4.35)

µi j =−P−1
i j H̃i j µ̂i. (4.36)

Then, we have the marginal Gaussian pdf N (µi,P−1
i) for each x̃i with precision and mean as follows:

P−1
i = P̂i

−1; (4.37)

µi = P−1
i µ̂i. (4.38)

The detailed implementations of our PGM/GBP solver for DC SE and AC SE are shown in Algorithm 1 and

Algorithm 2, respectively.

Algorithm 1 GBP DC (PGM/GBP solver for DC SE)
Input: G = (V,E), H, z, Λ, λ , ε , and T .
Output: x̃[1 : m].

Initialize t = 0 and x(t) with x(t)i ∼N (0,1).
Initialize P(t)

ii = H̃ii, µ
(t)
ii = z̃i/H̃ii; P(t)

ki = 0,µ(t)
ki = 0,∀k 6= i.

Initialize P(t+1)
i j = ∞, µ

(t+1)
i j = ∞, for (i, j) ∈ Ẽ.

Initialize P(t+1)
i j = 0, µ

(t+1)
i j = 0, for (i, j) /∈ Ẽ.

Construct matrix Ĥ = Λ1/2H and ẑ = Λ1/2z.
Construct augmented matrix H̃ =

[
Im×m, ĤT ;Ĥ,−λ In×n

]
.

Construct augmented graph G̃ = (Ṽ , Ẽ).
while ‖P(t+1)−P(t)‖∞ ≥ ε and ‖µ(t+1)−µ(t)‖∞ ≥ ε and t < T do

Update P̂(t+1)
i = P(t)

ii +∑ṽk∈N(ṽi) P(t)
ki ,∀i ∈ Ṽ ;

Update µ̂
(t+1)
i = (P̂(t+1)

i)−1(P(t)
ii µ

(t)
ii +∑ṽk∈N(ṽi) P(t)

ki µ
(t)
ki),∀i ∈ Ṽ ;

Update P(t+1)
i j =−H̃−2

i j /P̂(t+1)
i ,∀(i, j) ∈ Ẽ;

Update µ
(t+1)
i j =−(P(t+1)

i j)−1H̃i j µ̂
(t+1)
i ,∀(i, j) ∈ Ẽ;

t = t +1.
end while
return x̃i = µ

(t)
i = µ̂

(t)
i /P̂(t)

i ,∀i.

www.manaraa.com

22

Algorithm 2 GBP AC (PGM/GBP solver for AC SE)
Input: G = (V,E), z, Λ, λ , ε , and T .
Output: x̃[1 : m].

Initialize t = 0 and x(t) with x(t)i ∼N (0,1).
Initialize x(t) with x(t)i = ∞.
Compute h(x(t)) and H(x(t)).
Compute z(t) = z−h(x(t)).
while ‖x(t+1)−x(t)‖∞ ≥ ε and t < T do

Compute ∆x(t) = GBP DC(G,H(x(t)),z(t),Λ,λ ,ε,T)
Update x(t+1) = x(t)+∆x(t).
Update h(x(t+1)) and H(x(t+1)).
Update z(t+1) = z−h(x(t+1)).
t = t +1.

end while
return x̃ = x(t).

4.3.3 Example

We continue with the 3-bus example. Given the node potentials and edge potentials defined in Sec-

tion 4.2.3, we can define the joint Gaussian pdf in Eq. (4.10) and use GBP to infer the marginal mean

for each x̃i. For instance, for DC SE, by running Algorithm 1 with λ = 1e− 5 and ε = 1e− 5, our GBP

terminates in three iterations. The estimated mean values in the three iterations are:

µ
(1) = [0.0564,−0.3291,0.4923,−0.4930,−0.0621], (4.39)

µ
(2) = [0.0174,−0.1013,0.6444,−0.6441,−0.0803], (4.40)

µ
(3) = [0.0174,−0.1013,0.6437,−0.6434,−0.0799]. (4.41)

By selecting the first two elements of µ(3), our PGM method yields the same results as those estimated by

existing SE solvers (i.e., θ1 = 0.0174,θ2 =−0.1013, as shown in Section 2.3).

4.4 Existing SE Solvers Versus Our Proposed PGM/GBP Solver

Existing SE solvers either directly calculate the matrix inverse (e.g., using the Gaussian elimination al-

gorithm) to obtain a closed-form solution, or leverage iterative methods (such as the Jacobi iterative method

and the Gauss-Seidel iterative method) to accelerate the calculation. It has been proved in [3, 17, 18] that the

GBP solver for a system of linear equations is identical to the Gaussian elimination algorithm, and the GBP

www.manaraa.com

23

solver incorporating two-way message passing (i.e., speedup) is identical to the Jacobi iterative method. In

Chapter 5, we will use experimental results to demonstrate the equivalence between our proposed PGM/GBP

solver and existing SE solvers in terms of state estimation results.

4.5 Complexity Analysis

Our proposed PGM/GBP solver and existing SE solvers all involve the calculation of matrix inverse:

Eq. (2.5) for the DC case or Eq. (4.12) for the AC case. Without loss of generality, we only focus on the

computational complexity of solving Eq. (2.5) for the DC case. Similar trends can be observed for solving

Eq. (4.12) for the AC case.

As shown in Algorithm 1, our method solves Eq. (2.5) in an iterative process. At each iteration, it first

calculates each P̂i and µ̂i, with each traversing all nodes and all edges in G̃ once. Then, it calculates each Pi j

and µi j, which also traverse all edges in G̃ once. Thus, the computational complexity of our method at each

iteration is 4|Ẽ|+2|Ṽ |. From Eq. (4.2), we know that |Ẽ|= 2|E|+(m+n), |Ṽ |= m+n, and |E|> (m+n).

Therefore, the dominating computational complexity of our method at each iteration is O(|E|). With T1

iterations to reach the stop conditions, our PGM/GBP solver has a dominating computational complexity of

O(T1 · |E|).

Existing SE methods solve the matrix inverse in Eq. (2.5) either directly or in an iterative process. Direct

matrix inverse methods, such as the Gaussian elimination algorithm, involve matrix-matrix additions and

multiplications, while iterative methods only require matrix-vector additions and multiplications. Moreover,

iterative methods can exploit the matrix sparsity to further reduce the computational complexity [19]. Thus,

in general, iterative methods are more efficient than direct matrix inverse methods, particularly when the

matrix size is large. More specifically, direct matrix inverse methods have a computational complexity of

O(nm2 + nm+m3) to obtain a closed-form solution to Eq. (2.5). Iterative methods, such as the Jacobi

iterative methods and the Gauss–Seidel iterative methods, have a computational complexity of O(T2 · |E|)

to solve Eq. (2.5), where T2 is the number of iterations to reach the same stop conditions as our PGM/GBP

solver.

www.manaraa.com

24

The main drawback of existing SE solvers is that, under certain conditions, the iterative process con-

verges slowly or even cannot converge (i.e., diverge), which leads to a very large T2. However, as demon-

strated empirically in [3, 18], our PGM/GBP solver converges faster and has a relatively small T1. As a

result, it is more efficient than existing SE solvers. We will further validate this claim in Section 5.3 with

experimental results. The reasons for the superior efficiency performance of our proposed PGM/GBP solver

may be due to the following reasons. First, by transforming the SE problem to a probabilistic inference prob-

lem on a PGM, the physical constraints and relations between components in the power grid are considered

explicitly in the PGM and during the computation. Second, by utilizing the GBP algorithm to perform prob-

abilistic inference, each node in the PGM takes messages from all of its neighbor nodes at each iteration,

thus progressing more toward the final estimates at each iteration hence a smaller number of iterations.

www.manaraa.com

25

CHAPTER 5. PERFORMANCE EVALUATION: PGM

5.1 Experimental Setup

We have conducted a number of experiments to: (1) demonstrate the equivalence of existing SE solvers

and our proposed PGM method in terms of the resultant state estimates (Section 5.2); and (2) compare their

efficiency in terms of computational time (Section 5.3).

All the experiments are conducted using MATPOWER 6.0 [5], which is a power flow solver package

available for MATLAB that allows one to conduct state estimation on power system test models. The

running time reported in Section 5.3 is tested on a 15-core Linux server with an Intel Core i5 2.7 GHz

processor for each core and 252.2 GB memory. We wrote our own codes for performing the proposed

PGM/GBP solver for AC SE. I personally developed the code for generating the meter measurements, which

is documented in Appendix A. The parameters used throughout the experiments include:

• N: Number of buses in the network;

• σ : Meter standard deviation;

• ε: Threshold value to terminate the iterations;

• T : Maximal number of iterations;

5.2 AC SE Versus AC PGM: State Estimates

We first compare AC PGM and AC SE in terms of the estimated states. The first experiment is evaluated

on the IEEE 14-bus system with varying meter standard deviations. Five trials are conducted for each level of

meter standard deviation, where different meter measurements are generated according to the corresponding

standard deviation. Results are plotted in Fig. 5.1a. The second experiment is evaluated on IEEE 14-bus,

30-bus, 57-bus, 118-bus, and 300-bus systems, with a fixed meter standard deviation of between 0.01 and

0.02, depending on the meter type. The configurations of these test systems can be found in their respective

source files provided with MATPOWER as case14.m, case30.m, case57.m, case118.m, and case300.m,

www.manaraa.com

26

respectively. Results are plotted in Fig. 5.1b. From these experiments, we observe that both methods

produce almost identical state estimates, regardless of the meter accuracy or the power grid size, which

demonstrates the practical equivalence between the two methods.

Note that small differences between the state estimates of the two methods have been observed in some

of the trials. This is because these two methods have different structures of the iterative process and thus

may terminate at different state values. However, since the termination threshold is small (i.e., ε = 1e−4),

differences are very minimal.

0.01 0.015 0.02 0.025 0.03
: Meter standard deviation

-0.1

-0.05

0

0.05

0.1

A
ve

ra
ge

 d
iff

er
en

ce
of

 A
C

 S
E

 a
nd

 P
G

M

(a) IEEE 14-bus

14 30 57 118 300
Number of buses (N)

-0.1

-0.05

0

0.05

0.1
D

iff
er

en
ce

 b
et

w
ee

n
A

C
 S

E
 a

nd
 P

G
M

(b) σ = 0.01 to 0.02

Figure 5.1 Comparison of state estimates for AC SE and AC PGM.

5.3 AC SE Versus AC PGM: Running Time

We compare AC PGM with AC SE in terms of running time with different bus systems and different

thresholds ε to compare their computational efficiency. The experiment is evaluated on IEEE 14-bus, 30-

bus, 57-bus, 118-bus, 300-bus, as well as Pan European Grid Advanced Simulation and State Estimation

(PEGASE) 1354-bus and Polish 3012-bus systems. The configurations of latter two systems also can be

found in MATPOWER as case1354pegase.m [20, 21] and case3012wp.m, respectively. The maximal num-

ber of iterations T is set to be 1000. Figs. 5.2a and 5.2b display the running time of the standard AC SE

solver and our proposed AC PGM method when ε = 1e− 4 and ε = 1e− 5, respectively. In each trial,

www.manaraa.com

27

a variety of real and reactive power flows are measured, and both voltage magnitude |u| and phase θ are

estimated.

14 30 57 118 300 13543012
Number of buses (N)

100

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

AC SE
AC PGM

(a) ε = 1e−4

14 30 57 118 300 13543012
Number of buses (N)

100

101

102

103

104

105

R
un

ni
ng

 ti
m

e
(s

ec
on

d)

AC SE
AC PGM

(b) ε = 1e−5

Figure 5.2 Comparison of running time for AC SE and AC PGM.

We have the following observations: First, when the number of buses (N) is smaller, AC PGM needs

slightly more running time. This is because the matrix size dominates the running time when the number of

buses is small. Recall from Section 4.5 that AC PGM solves a nonlinear system with matrix size (m+n)×

(m+n), while AC SE deals with a smaller nonlinear system with matrix size m×n. Second, as the number

of buses is larger than a certain value, i.e., exceeds 300, AC PGM consumes less time than AC SE. This is

because the dominating computational complexities of both methods have the same order: O(E(H)), while

AC PGM needs far fewer iterations to converge than AC SE (see Section 4.5). For instance, when N = 3012

and ε = 1e−5, AC PGM converges at 98 iterations and 4734 seconds, while AC SE does not even converge

within 1000 iterations or 62496 seconds.

To summarize, we have experimentally verified that our proposed PGM solver for AC SE is more com-

putationally efficient, hence more practical, than existing solvers for power networks with a large number of

buses.

www.manaraa.com

28

CHAPTER 6. APPLICATION: DEFENSE AGAINST FALSE DATA INJECTION

ATTACKS

With our proposed PGM method as a fast and efficient alternative to solve the SE problem, there are

many practical applications for this method. In this chapter, as an example, I explain how our PGM method

may provide a practical defense against the well-known false data injection attacks (FDIAs). Table 6.1

summarizes the terms and notations used in Chapter 6.

Table 6.1 Terms and notations used in Chapter 6

Symbol Definition
FDIA False data injection attack
BDD Bad data detection

WSE or J Weighted squared error
r Residual

SSR Sum of squared residuals
σ2 Meter measurement variance
τ BDD threshold
α BDD significance level
za Altered measurement vector
a Attack vector

xbad Corrupted state estimates
c State error injection vector

6.1 State Estimation (SE) And Bad Data Detection (BDD)

After the state variables are estimated, it is important to check whether the estimated state values are

trustworthy and whether the measurements are accurate. The bad data detection (BDD) technique is used

for this purpose.

BDD is performed using an objective function in the form of a weighted squared error (WSE), which is

calculated based on the estimated state values, the accuracy of the measuring meters, and the actual meter

measurements. The WSE is a weighted sum of squared residuals (SSR), where a residual is the difference

between an observed measurement and an estimated measurement based on the estimated state values. For

www.manaraa.com

29

a residual of r = z−Hx, the SSR is defined as R = ||z−Hx||2, where || · ||2 is the `2-norm. The WSE can

then be determined from the SSR by taking into account the variances of the meter measurements and by

assigning greater weights to the more accurate meters, as follows [22]:

J =
n

∑
i=1

(zi−Hxi)
2

σ2
i

. (6.1)

Note that J2 follows a χ2(n−m)-distribution. Therefore, if J > τ , we say that the estimated state values

are untrustworthy with the probability of a false alarm being α , where τ is the threshold that can be decided

using the χ2(n−m)-distribution at the significance level of α [1].

6.2 False Data Injection Attacks (FDIAs)

In practice, for large-scale power grid systems, DC SE is a popular option to estimate state variables

and correct measurement noises, because it is much more efficient than AC SE, which is computationally

expensive and thus less feasible.

Unfortunately, DC SE is known to be vulnerable to false data injection attacks (FDIAs). FDIA was first

reported in [1] and, since then, has been well-studied in the literature. It works as follows. The attacker

alters the meter measurements in such a way that the resulting state estimates are corrupted, while the SSR

and hence the WSE calculated by DC SE is the same as they would be without FDIA, thus escaping BDD.

To see this, let za be an altered measurement vector such that za = z+ a, where z is the original meter

measurement vector and a is an attack vector consisting of meter measurement errors injected by the attacker.

Further, let the corrupted state estimates be xbad = x+ c, where c is the difference between the estimated

state values with and without FDIA. We designate c as the state error injection vector since it contains the

error injected by the attacker into the state estimates. Note that the SSR with FDIA is given as follows:

||za−Hxbad ||= ||za−H(x+ c)||= ||z−Hx+(a−Hc)||. (6.2)

This tells us that FDIA can evade detection if the attacker injects an attack vector a such that a−Hc = 0.

When considering such FDIA against the power grid, it is necessary and helpful to classify different

kinds of attacks that a potential attacker could try to launch. [1] lists a number of different FDIA scenarios

www.manaraa.com

30

Table 6.2 FDIA types. Attacker access to the meters: UL (unlimited) or
LIM (limited). Attacker resources: UL (nlimited) or LIM (lim-
ited). States under attack: RAND (random) or TGT (targeted).
Impact on other states: TGT UC (targeted unconstrained) or
TGT CON (targeted constrained).

Scenario Access to the
Meters

Attacker
Resources

States Under
Attack

Impact on
Other States

UL or LIM UL or LIM RAND or TGT UC or CON
1 UL UL RAND
2 UL UL TGT UC
3 UL UL TGT CON
4 UL LIM RAND
5 UL LIM TGT UC
6 UL LIM TGT CON
7 LIM UL RAND
8 LIM UL TGT UC
9 LIM UL TGT CON
10 LIM LIM RAND
11 LIM LIM TGT UC
12 LIM LIM TGT CON

(shown in Table 6.2), which can be classified according to: (1) whether an attacker has unlimited access

to all meters or only limited access to some meters in the network; (2) whether an attacker has unlimited

resources with which to pollute all of the accessible meters or only limited resources with which to pollute

only some of the accessible meters; and (3) whether the attacker injects random state estimates with random

errors (a random FDIA) or targets specific states to inject with specific errors (a targeted FDIA).

It should be noted that a random FDIA is not the same as introducing random errors in the meter mea-

surements, which can be easily detected by BDD. What is random in the case of a random FDIA is not the

errors introduced into the meter measurements, but the errors injected into the state estimates. That is to say,

a random FDIA takes place when the attacker introduces specific errors into specific meter measurement

values such that the attack will go undetected by BDD, but does not care which states are compromised or

by how much they are compromised as a result.

For targeted FDIA, on the other hand, the attacker designs the FDIA so as to inject specific state es-

timate errors into specific states. In other words, there are specific states that are targeted by the attacker

with the purpose of injecting specific errors into them. Targeted FDIA are distinguished into two sub-

www.manaraa.com

31

classifications: targeted unconstrained FDIA and targeted constrained FDIA. The difference between these

two sub-classifications is that for targeted unconstrained FDIA, the attacker designs the attack to introduce

specific errors into the targeted states, but designs the attack such that other non-targeted states may be

compromised as well. For a constrained FDIA, however, the attacker designs the attack such that only the

targeted states are compromised.

I will consider one particular kind of attack in the discussion that follows- a targeted constrained attack

where the attacker is assumed to have unlimited access to meters and unlimited resources. In a targeted

attack, the attacker designs the FDIA so as to inject specific state estimate errors into specific states. The

attack is said to be constrained in that the attacker designs the attack such that only the targeted states are

compromised. I chose to focus on this FDIA scenario because: (1) the attacker is granted the advantage of

being able to attack all of the meters; (2) in targeting specific states, the attacker presumably has a specific

goal in mind (they want to compromise the power grid in a particular fashion); and (3) by only introducing

specific false data into the targeted states, the attack may be less visible than if random errors were injected

into multiple states.

To illustrate how an FDIA works, I will continue to use the same example 3-bus power system shown in

Fig. 2.1. Recall that I showed in Section 2.3 that, with DC SE, the state variables are estimated as:

x = [θ1,θ2]
T = [0.0174,−0.1013]T radians. (6.3)

With the given meter measurements z, the standard deviation of the meter measurements σ , and the Jacobian

H, we can calculate the WSE as:

J =
n

∑
i=1

(zi−Hxi)
2

σ2
i

= 0.2345. (6.4)

The χ2-distribution for this example network (with 3 meter measurements and 2 unknown states) yields a

WSE threshold of τ = 6.635 for a significance level of α = 0.01. As we would expect, the WSE is well

below the threshold when there are only measurement noises but without an FDIA attack.

www.manaraa.com

32

Now, suppose the attacker intends to inject an error of 0.5 radians into state θ1. That is, the false data

injection vector is c = [0.5,0]T , and the intended corrupted state estimates are:

xbad = x+ c = [0.5174,−0.1013]T . (6.5)

The attack vector needed to alter the meter measurements to generate the polluted state is:

a = Hc =


5 −5

2.5 0

0 −4


 0.5

0

=


2.5

1.25

0

 . (6.6)

With this attack vector added to the actual meter measurements, DC SE would yield exactly the same

WSE as above (i.e., 0.2345), thus producing the corrupted state estimates xbad while evading BDD.

6.3 Defense Against FDIAs

Many DC SE based defenses [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] have been proposed to

deal with FDIAs. However, these defenses usually are hard to implement in practice because they often make

very strong assumptions [36]. For instance, most of these defenses assume that certain meter measurements

can be completed shielded from the attacker, which may not be realistic. Moreover, it has been shown in [36]

that, by slightly modifying the FDIA, DC SE based defenses could be rendered ineffective.

6.4 AC-Based Defense

A more intuitive and effective way to defend against FDIAs is to simply apply AC SE to estimate the

unknown states. Before illustrating this, it would be helpful to expand upon the difference between AC and

DC SE discussed in Chapter 2. As was stated there, the fact that DC SE has a closed form solution makes

it significantly more efficient than the iterative methods used for AC SE. However, the closed form solution

also makes DC SE more susceptible to FDIA.

Note that when performing AC SE, meter measurements are taken of both real and reactive power

injections to buses and power flows across transmission lines in the network. The nonlinear equations used

www.manaraa.com

33

to calculate the expected real (P) and reactive (Q) power flows from busi to bus j for AC SE are given below

in terms of the state variables (|u| and θu):

Pi j = |ui|2gi j−|ui||u j|gi jcos(θi−θ j)−|ui||u j|bi jsin(θi−θ j), (6.7)

Qi j =−|ui|2(bi j +bi)−|ui||u j|gi jsin(θi−θ j)+ |ui||u j|bi jcos(θi−θ j), (6.8)

where gi j + jbi j is the series admittance of the line and bi is the shunt susceptance at bus i. For DC SE,

the series conductance (gi j) and shunt susceptance (bi) are neglected, and the voltage magnitudes at all of

the buses in the network are assumed to be 1 per-unit or 1pu. As a result, only real power flows (P) are

measured for DC SE and only the voltage phases (θu) are estimated. Assuming the voltage phases are small,

Equation (6.7) is then approximated by the following linear equation [22]:

Pi j = bi j(θi−θ j). (6.9)

All of the functions used to obtain h(x) for DC SE are of this linear form. Accordingly, when the

derivative of Equation (6.9) is taken with respect to the voltage phase at every bus to obtain the Jacobian

matrix H from Equation 2.3, the resultant H is independent of the voltage states, which is what allows for

a closed-form solution in DC SE. For AC SE, however, the Jacobian will be consistent of the derivatives

of nonlinear Equations (6.7) and (6.8) with respect to the voltage states. These derivatives will themselves

be nonlinear equations, making for a much more computationally complex problem, making FDIAs more

difficult to implement.

To illustrate this, consider the 3-bus example. The difference here compared with DC SE is that the real

power measurements are defined in terms of their actual non-linear relationships to the unknown states (as

opposed to the simplified relationships used for DC). For the purposes of this example (as well as in the

experiments conducted in Section 7.3), it is important to note that I am making the same assumption that the

www.manaraa.com

34

voltage magnitude at every bus is 1pu for AC SE as is made for DC SE. That is to say, I am performing SE

with a simplified version of AC SE in this example.

The reason I am making this assumption is so that a better comparison can be made between DC and AC

SE in terms of the impact that the use of non-linear equations in AC SE makes on the ability to detect FDIA.

This example shows that by changing h(x) from a function of linear equations to non-linear equations, SE

is able to detect the FDIA that went undetected in the example in Section 6.2. By implication, standard AC

SE, which does not make the assumption that the voltage magnitude of every bus is 1pu, would likewise be

able to detect FDIA.

Applying this simplified version of AC SE to the 3-bus problem with the same attack vector as in the

previous section, we will observe a significantly larger WSE (i.e., J = 13.2042 as compared with J = 0.2345

for DC SE), well exceeding the threshold for BDD (τ = 6.635). As a result, the FDIA can be successfully

detected.

The reason why AC SE can successfully defend against FDIA is because it considers the underlying

nonlinear dependencies between states and measurements. Thus, the Jacobian matrix in AC SE is a function

of the unknown states to be estimated and changes at each iteration. This is unlike DC SE, where the

Jacobian matrix is constant over all iterations. As a result, in the case of AC SE with the presence of FDIA,

the altered meter measurements not only corrupt the state estimates, but also corrupt the Jacobian that is

used to obtain the state estimates. This leads to a large weighted squared error, meaning that the FDIA can

be detected by the BDD.

Although the AC SE-based defense is effective against FDIA, it is often considered a less practical solu-

tion. This is because AC SE is computationally expensive and time-consuming due to its slow convergence

or non-convergence property. Now, given that our proposed PGM solver to the AC SE problem is much more

efficient than existing solvers and converges much faster, it becomes more realistic to deploy PGM-based

AC SE to defend against FDIA in real power systems.

Before moving forward, it should be noted that the potential vulnerability of even nonlinear AC-based

SE to FDIA has been demonstrated by Jin et al. [37], who formulated attacks against AC SE as a convex

optimization problem, and solved for attack vectors via semidefinite programming. However, the proposed

www.manaraa.com

35

attack strategy assumes that an attacker has full knowledge of the power grid system. This means that it

would still be difficult for an attacker to launch an effective attack against AC SE (and by implication, AC

PGM) using this approach, as full knowledge of all system meter measurements is a strong assumption. A

more practical threat model would be one in which an attacker is only allowed to have partial knowledge

about the system. Perhaps attacks against AC SE under more practical threat models are still possible, but

to our knowledge this has yet to be demonstrated. Nevertheless, providing a means of defense against all

possible threats, including those with strong assumptions, would still be ideal. That being said, any further

means of defense that are developed for AC SE could theoretically be integrated into AC PGM as well,

which has the added benefit of being more efficient.

www.manaraa.com

36

CHAPTER 7. PERFORMANCE EVALUATION: DEFENSE AGAINST FDIA

7.1 Experimental Setup

I conducted a number of experiments to: (1) examine the susceptibility of DC SE to FDIA under dif-

fering conditions (Section 7.2); and (2) illustrate the immunity of AC SE/PGM to FDIAs (Section 7.3).

All of these experiments were conducted using MATPOWER 6.0 [5]. Because MATPOWER only offers

an open-source code for performing AC SE, I updated the provided code to perform DC SE as well (see

Appendix B).

All of the experiments in this chapter were conducted using the IEEE 14-bus system. For the experiments

in Section 7.3, I made the same assumption for AC SE/PGM as in the 3-bus example in Section 6.4, namely,

that the voltage magnitudes are 1pu and the same meter measurements are used for AC as DC SE/PGM.

Once again, this is done in order to offer a better comparison of the use of nonlinear versus linear equations

in SE/PGM for defending against FDIA.

For convenience, I denote our GBP-based solver on PGM that solves with linear and nonlinear equations

as DC PGM and AC PGM, respectively. It should be remembered for the purposes of these experiments that

the state estimate values obtained via SE and PGM are practically equivalent (see Sections 4.4 and 5.2). For

practical considerations, all of the FDIA in these experiments were constrained targeted attacks with either

unlimited resources or limited resources (scenarios 3 and 6 as defined in Table 6.2). My reasons for using

constrained targeted attacks with unlimited resources were explained in Section 6.2. I consider FDIAs with

limited resources as well to examine the susceptibility to FDIA even when the attacker is assumed to have

fewer resources.

The parameters used throughout these experiments are:

• N: Number of buses in the network;

• J: Weighted squared error (WSE);

• σ : Meter standard deviation;

www.manaraa.com

37

• ε: Threshold value to terminate the iterations;

• T : Maximal number of iterations;

• M: Number of states under the FDIA attack;

• K: Percentage of the meters that an attacker has resources to compromise;

• ci: State error injected into state i under FDIA;

By default, I set the number of states under attack to M = 2, the percentage of meters that an attacker has

resources to compromise to K = 100%, and the state error injection value to ci = π/3 radians. Moreover, I

set the threshold to ε = 1e−5 and the maximal number of iterations to T = 1,000 for both SE and PGM. The

BDD threshold for WSE is τ = 33.41, which is the threshold level for a χ2(n−m)-distribution with n = 30

meters and m = 13 states at a significance level of α = 0.01.

7.2 Susceptibility Of DC SE To FDIA

7.2.1 Successful Attack Ratio When Attacker Has Full Access To All Meters

In order to examine the susceptibility of DC SE to FDIA, I conducted an experiment in which the

attacker is assumed to have full access to all meters and desires to attack a specific number of states M

ranging from 1 to 13 (note that the total number of unknown voltage phase states in the IEEE 14-bus system

is 13). For each M, I randomly generated 1,000 unique attack vectors (or less if the maximum number of

unique attack vectors for a given M was less than 1,000) that could be used to launch an attack against that

specific number

of states. I then determined what percentage of those attacks could be successfully launched for various

amounts of attacker resources (K).

Figure 7.1 shows the results. We observe that as K increases, the attacker has more resources to com-

promise a greater number of meters, and thus can generate a greater number of successful attack vectors.

An interesting finding is that the attacker is able to generate a successful FDIA by polluting just 20% of the

meters, and can launch a successful attack against 10 states with 80% of the meters.

www.manaraa.com

38

1 2 3 4 5 6 7 8 9 10 11 12 13
M: # States Compromised

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

fu
l A

tta
ck

 R
at

io

K=10%
K=20%
K=40%
K=60%
K=80%
K=100%

Figure 7.1 Successful attack ratio versus number of compromised states M and amount of resources avail-
able K. Y-axis displays the percentage of successfully generated attack vectors with varying
amounts of resources. X-axis is the number of states M under attack.

7.2.2 Meters Needed For A Successful Attack

In this experiment, I investigated the percentage of total network meters an attacker needs to pollute to

launch a successful FDIA against DC SE that compromises a given number of states, M. The results, shown

in Figure 7.2, confirm what we observe in Figure 7.1. For instance, Figure 7.2 shows that between 50 and

70% of the meters would need to be polluted by an attacker in order to successfully launch an FDIA that

compromises five state values. Looking at Figure 7.1, we see that an attacker won’t be able to attack five

states with only enough resources to pollute 40% or fewer of the meters, but can always launch a successful

attack against five states with enough resources to pollute 80% of the meters, consistent with the results in

Figure 7.2.

As we would expect, the number of meters needed to successfully launch an FDIA generally increases

as the number of states being attacked increases. This trend continues until M is so great that all of the

available meter measurements must be altered by an attacker (11 or more for the IEEE-14 bus system).

7.3 AC SE/PGM Defense Against FDIA

To evaluate the effectiveness of AC SE/PGM based defenses against FDIAs, I simulated one particular

type of strong attacks: a targeted constrained attack. Here, the attacker is assumed to have unlimited

www.manaraa.com

39

1 2 3 4 5 6 7 8 9 10 11 12 13
M: # States Compromised

10

20

30

40

50

60

70

80

90

100

%
 M

et
er

s
A

tta
ck

ed

DC

Figure 7.2 Fraction of attacked meters versus number of compromised states M. Y-axis displays the per-
centage of meter values needed to be changed for a successful attack; X-axis displays the
number of states compromised in the attack.

resources and unlimited access to the meters. Once again, in a targeted attack, the attacker tries to inject

specific state estimate errors into specific states; an attack is said to be constrained in that the attacker

designs the attack in such a way that only the targeted states are corrupted [1].

In these experiments, I show the resilience of AC SE and AC PGM against FDIA. Figures 7.3a and 7.3b

display the weighted squared error J for both DC methods (DC SE and DC PGM) and AC methods (AC SE

and AC PGM) under successful FDIA against DC SE. For the experiment shown in Figure 7.3a, the attack

vectors are generated for various K and M = 2. For the experiment shown in Figure 7.3b, the attack vectors

are generated for various M and K = 100%. The BDD threshold is shown as the dashed line.

We observe that all attack vectors in both experiments can evade detection by DC methods, as their

generated weighted squared errors are below the χ2 threshold. However, the pollution of meter measure-

ments with these attack vectors can be easily detected by AC methods, whose weighted squared errors are

much larger than the threshold. This confirms the resilience of AC SE/PGM against FDIA which are di-

rected at DC SE, as was discussed in in Section 6.4. Taken in concert with the experimental conclusions of

Section 5.3, we can conclude that AC PGM is an efficient means of defending against FDIA.

www.manaraa.com

40

20 40 60 80 100
K: % Meters Compromisable

10 2

10 4

10 6

J:
 W

ei
gh

te
d

S
qu

ar
ed

 E
rr

or

AC
DC

(a) M = 2

1 2 4 8 12
M: # States Compromised

10 2

10 4

10 6
J:

 W
ei

gh
te

d
S

qu
ar

ed
 E

rr
or

AC
DC

(b) K = 100%

Figure 7.3 Comparison of WSE for DC SE/PGM and AC SE/PGM. In (a), we vary the percentage of com-
promisable meters (denoted as K), and in (b), we vary the number of states to attack (denoted
as M).

www.manaraa.com

41

CHAPTER 8. CONCLUSION

This thesis presents a novel and efficient solver to the state estimation (SE) problem, based on prob-

abilistic graphical models (PGMs). The proposed PGM-based solver (1) models a power grid as a PGM

based on the physical constraints of the power grid, (2) transforms the original SE problem into an equiv-

alent probabilistic inference problem on the PGM, (3) uses Gaussian belief propagation (GBP) algorithms

to infer the marginal probability distributions of the state variables, and then (4) produces the final state

estimates. Experimental results show that the proposed PGM-based solver is more efficient than existing SE

solvers, while yielding the same state estimation results. Due to its excellent computational efficiency, our

proposed PGM-based solver may have many potential applications. I have highlighted one such application

in this thesis, namely, that it can serve as a practical defense against false data injection attacks (FDIAs).

www.manaraa.com

42

REFERENCES

[1] Yao Liu, Peng Ning, and Michael K Reiter. “False data injection attacks against state estimation
in electric power grids”. In: ACM Transactions on Information and System Security (TISSEC) 14.1
(2011), p. 13.

[2] Gu Chaojun, Panida Jirutitijaroen, and Mehul Motani. “Detecting false data injection attacks in ac
state estimation”. In: IEEE Transactions on Smart Grid 6.5 (2015), pp. 2476–2483.

[3] Danny Bickson. “Gaussian belief propagation: Theory and aplication”. In: arXiv preprint
arXiv:0811.2518 (2008).

[4] Daphne Koller, Nir Friedman, and Francis Bach. Probabilistic graphical models: principles and tech-
niques. MIT press, 2009.

[5] Ray Daniel Zimmerman, Carlos Edmundo Murillo-Sánchez, and Robert John Thomas. “MAT-
POWER: Steady-state operations, planning, and analysis tools for power systems research and ed-
ucation”. In: IEEE Transactions on power systems 26.1 (2011), pp. 12–19.

[6] Allen J Wood, Bruce F Wollenberg, and Gerald B Sheblé. Power generation, operation, and control.
John Wiley & Sons, 2013.

[7] Jian Sun, Nan-Ning Zheng, and Heung-Yeung Shum. “Stereo matching using belief propagation”. In:
IEEE Transactions on Pattern Analysis & Machine Intelligence 7 (2003), pp. 787–800.

[8] Pedro F Felzenszwalb and Daniel P Huttenlocher. “Efficient belief propagation for early vision”. In:
International journal of computer vision 70.1 (2006), pp. 41–54.

[9] Jeff Bilmes and Geoffrey Zweig. “The graphical models toolkit: An open source software system for
speech and time-series processing”. In: 2002 IEEE International Conference on Acoustics, Speech,
and Signal Processing. Vol. 4. IEEE. 2002, pp. IV–3916.

[10] Yoshua Bengio. “Markovian models for sequential data”. In: Neural computing surveys 2.199 (1999),
pp. 129–162.

[11] Thomas L Griffiths et al. “Probabilistic models of cognition: Exploring representations and inductive
biases”. In: Trends in cognitive sciences 14.8 (2010), pp. 357–364.

[12] Je-Gun Joung and Zhangjun Fei. “Identification of microRNA regulatory modules in Arabidopsis via
a probabilistic graphical model”. In: Bioinformatics 25.3 (2008), pp. 387–393.

[13] Dror Baron, Shriram Sarvotham, and Richard G Baraniuk. “Bayesian compressive sensing via belief
propagation”. In: IEEE Transactions on Signal Processing 58.1 (2010), pp. 269–280.

www.manaraa.com

43

[14] Thomas J Richardson and Rüdiger L Urbanke. “The capacity of low-density parity-check codes under
message-passing decoding”. In: IEEE Transactions on information theory 47.2 (2001), pp. 599–618.

[15] Judea Pearl. Causality. Cambridge university press, 2009.

[16] Jonathan S Yedidia, William T Freeman, and Yair Weiss. “Understanding belief propagation and its
generalizations”. In: Exploring artificial intelligence in the new millennium 8 (2003), pp. 236–239.

[17] Binghui Wang, Neil Zhenqiang Gong, and Hao Fu. “GANG: Detecting fraudulent users in online
social networks via guilt-by-association on directed graphs”. In: 2017 IEEE International Conference
on Data Mining (ICDM). IEEE. 2017, pp. 465–474.

[18] Jinyuan Jia et al. “AttriInfer: Inferring user attributes in online social networks using markov random
fields”. In: Proceedings of the 26th International Conference on World Wide Web. 2017, pp. 1561–
1569.

[19] Yousef Saad. Iterative methods for sparse linear systems. Vol. 82. siam, 2003.

[20] Cédric Josz et al. “AC power flow data in MATPOWER and QCQP format: iTesla, RTE snapshots,
and PEGASE”. In: arXiv preprint arXiv:1603.01533 (2016).

[21] Stéphane Fliscounakis et al. “Contingency ranking with respect to overloads in very large power
systems taking into account uncertainty, preventive, and corrective actions”. In: IEEE Transactions
on Power Systems 28.4 (2013), pp. 4909–4917.

[22] Antonio Gomez-Exposito and Ali Abur. Power system state estimation: theory and implementation.
CRC press, 2004.

[23] Ruilong Deng et al. “False data injection on state estimation in power systems—Attacks, impacts,
and defense: A survey”. In: IEEE Transactions on Industrial Informatics 13.2 (2017), pp. 411–423.

[24] Gaoqi Liang et al. “A review of false data injection attacks against modern power systems”. In: IEEE
Transactions on Smart Grid 8.4 (2017), pp. 1630–1638.

[25] Rakesh B Bobba et al. “Detecting false data injection attacks on dc state estimation”. In: Preprints of
the First Workshop on Secure Control Systems, CPSWEEK. Vol. 2010. 2010.

[26] Aditya Ashok, Manimaran Govindarasu, and Venkataramana Ajjarapu. “Attack-resilient measure-
ment design methodology for state estimation to increase robustness against cyber attacks”. In: 2016
IEEE Power and Energy Society General Meeting (PESGM). IEEE. 2016, pp. 1–5.

[27] Tung T Kim and H Vincent Poor. “Strategic protection against data injection attacks on power grids”.
In: IEEE Transactions on Smart Grid 2.2 (2011), pp. 326–333.

[28] Oliver Kosut et al. “Malicious data attacks on smart grid state estimation: Attack strategies and coun-
termeasures”. In: Smart Grid Communications (SmartGridComm), 2010 First IEEE International
Conference on. IEEE. 2010, pp. 220–225.

www.manaraa.com

44

[29] Qingyu Yang et al. “On false data-injection attacks against power system state estimation: Model-
ing and countermeasures”. In: IEEE Transactions on Parallel and Distributed Systems 25.3 (2014),
pp. 717–729.

[30] Adnan Anwar, Abdun Naser Mahmood, and Zahir Tari. “Identification of vulnerable node clusters
against false data injection attack in an AMI based smart grid”. In: Information Systems 53 (2015),
pp. 201–212.

[31] Morteza Talebi, Chaoyong Li, and Zhihua Qu. “Enhanced protection against false data injection by
dynamically changing information structure of microgrids”. In: Sensor Array and Multichannel Sig-
nal Processing Workshop (SAM), 2012 IEEE 7th. IEEE. 2012, pp. 393–396.

[32] Shang Li, Yasin Yılmaz, and Xiaodong Wang. “Quickest detection of false data injection attack in
wide-area smart grids”. In: IEEE Transactions on Smart Grid 6.6 (2015), pp. 2725–2735.

[33] Yi Huang et al. “Defending false data injection attack on smart grid network using adaptive CUSUM
test”. In: Information Sciences and Systems (CISS), 2011 45th Annual Conference on. IEEE. 2011,
pp. 1–6.

[34] Jian Chen and Ali Abur. “Placement of PMUs to enable bad data detection in state estimation”. In:
IEEE Transactions on Power Systems 21.4 (2006), pp. 1608–1615.

[35] Xuan Liu, Zhiyi Li, and Zuyi Li. “Impacts of bad data on the PMU based line outage detection”. In:
arXiv preprint arXiv:1502.04236 (2015).

[36] Ruilong Deng, Gaoxi Xiao, and Rongxing Lu. “Defending against false data injection attacks
on power system state estimation”. In: IEEE Transactions on Industrial Informatics 13.1 (2017),
pp. 198–207.

[37] Ming Jin, Javad Lavaei, and Karl H Johansson. “Power Grid AC-based State Estimation: Vulnerability
Analysis Against Cyber Attacks”. In: IEEE Transactions on Automatic Control (2018).

[38] Rui Bo. test se. http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/extras/se/test se
.html. [Source code]. 2010 (Accessed April 22, 2019).

[39] Ray Daniel Zimmerman. runpf. http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/
runpf.html. [Source code]. 2014 (Accessed April 22, 2019.

[40] The MathWorks Inc. normrnd. https://www.mathworks.com/help/stats/normrnd.html?searchHigh
light=normrnd&s tid=doc srchtitle. [MATLAB Function]. (Accessed April 22, 2019).

[41] Rui Bo. doSE. http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/extras/se/doSE.html.
[Source code]. 2013 (Accessed April 22, 2019).

http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/extras/se/test_se.html
http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/extras/se/test_se.html
http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/runpf.html
http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/runpf.html
https://www.mathworks.com/help/stats/normrnd.html?searchHighlight=normrnd&s_tid=doc_srchtitle
https://www.mathworks.com/help/stats/normrnd.html?searchHighlight=normrnd&s_tid=doc_srchtitle
http://www.pserc.cornell.edu/matpower/docs/ref/matpower5.0/extras/se/doSE.html

www.manaraa.com

45

APPENDIX A. MATLAB METER MEASUREMENT GENERATION

I developed the following code to generate appropriate meter measurement values that can be used in

the state estimation code provided in MATPOWER (function test se [38]). The generated meter measure-

ment values are stored in the measurement index (idx), measurement (measure), and measurement variance

(sigma) structs that are defined in test se. To fully integrate my code, lines 17-45 in test se, where these

structs are defined, should be replaced with the code included in this appendix. It should be noted, however,

that in the version of my code included below the meter measurements are only generated for real power

flowing to or from various buses (which are the meter measurements of interest for DC SE). This code can

be altered to generate meter measurements for the other parameters on the power grid available for use in

AC SE as well.

First, the variance σ2 of the measurement error is designated in struct sigma for each kind of parameter

meter as discussed in Section 2.1. The parameters available for measurement in MATPOWER are real

power injected into the “from” end of a branch (PF), real power injected into the “to” end of a branch (PT),

generator real power injection (PG), reactive power injected into the “from” end of a branch (QF), reactive

power injected into the “to” end of a branch (QT), generator reactive power injection (QG), and bus voltage

magnitude (Vm). Bus voltage angle (Va) is never measured in SE since it is the state being estimated. In the

code included below, we only utilize real power injections to the “from” and “to” ends of a branch in keeping

with DC SE. The variance values for PF and PT are the default values provided in the test se function by

MATPOWER.

% specify measurement variances

sigma.sigma_PF = 0.02;//

sigma.sigma_PT = 0.02; //

sigma.sigma_PG = [];

sigma.sigma_Va = [];

www.manaraa.com

46

sigma.sigma_QF = [];

sigma.sigma_QT = [];

sigma.sigma_QG = [];

sigma.sigma_Vm = [];

Next, we perform a power flow analysis using the power flow function runp f provided with MAT-

POWER [39]. In this example, this is performed for case14, which corresponds to the IEEE 14-bus model.

However, any of the power grid models available in MATPOWER, regardless of the number of buses, could

be used instead. The results are stored in struct results14 to be accessed later on.

% specify measurements

results14 = runpf(case14);

The following variables define the index values that will be used to access the power flow results stored in

results14 for each parameter.

PF = 14;

PT = 16;

QF = 15;

QT = 17;

PG = 2;

QG = 3;

VM = 8;

Next, the meter measurement values are generated for all possible meters for the parameters of interest

(in our case, PF and PT for each branch). This is done by adding a randomly generated value of each

meter’s error to that meter’s per-unit measurement value. The error of each meter is generated by using the

MATLAB function normrnd [40] to derive a randomly generated number from a normal distribution with

mean 0 and variance equivalent to the measurement error variance of each parameter as defined above. The

www.manaraa.com

47

per-unit measurement values for each meter are simply the real power injections “from” and “to” each branch

divided by the base value (100 MVA) as determined by the power flow analysis and stored in results14.

sizePF = length(results14.branch(:,PF));

MPF = zeros(sizePF,1);

for i = 1:sizePF

MPF(i) = normrnd(0,sigma.sigma_PF) + (results14.branch(i,PF)/100);

end

sizePT = length(results14.branch(:,PT));

MPT = zeros(sizePT,1);

for i = 1:sizePT

MPT(i) = normrnd(0,sigma.sigma_PT)+ (results14.branch(i,PT)/100);

end

In the following code, the number of states, num states is defined as 13 (the total number of unknown

voltage angles) and the number of meters to be used, num M, is defined as 30 (though any number greater

than 13 and less than the total number of meters could possibly be chosen instead). Out of the total number

of meter measurement values that were generated above, 30 are randomly selected. The index for each of

these selected meter measurements is also defined.

size_M = sizePF + sizePT;

Mvec = zeros(size_M,1);

for i = 1:sizePF

Mvec(i) = MPF(i);

end

for i = 1:sizePT

Mvec(i + sizePF) = MPT(i);

end

www.manaraa.com

48

num_states = 13;

num_M = 30;

sel_ind = randsample(size_M, num_M);

Mm = sort(sel_ind);

sizePF2 = 0;

sizePT2 = 0;

for i = 1:num_M

if Mm(i) <= sizePF

sizePF2 = sizePF2 + 1;

end

if Mm(i)>sizePF && Mm(i) <= (sizePT+sizePF)

sizePT2 = sizePT2 + 1;

end

end

indPF = zeros(sizePF2,1);

mPF = zeros(sizePF2,1);

for i=1:sizePF2

indPF(i) = Mm(i);

mPF(i) = Mvec(Mm(i));

end

indPT = zeros(sizePT2,1);

mPT = zeros(sizePT2,1);

for i=1:sizePT2

indPT(i) = Mm(i+sizePF2)-sizePF;

www.manaraa.com

49

mPT(i) = Mvec(Mm(i+sizePF2));

end

Finally, the meter measurements and their corresponding indices are specified in struct measure and

struct idx to be used in test se when using MATPOWER to perform SE.

measure.PF = mPF;

measure.PT = mPT;

measure.PG = [];

measure.Va = [];

measure.QF = [];

measure.QT = [];

measure.QG = [];

measure.Vm = [];

% which measurements are available

idx.idx_zPF = indPF;

idx.idx_zPT = indPT;

idx.idx_zPG = []

idx.idx_zVa = [];

idx.idx_zQF = [];

idx.idx_zQT = [];

idx.idx_zQG = [];

idx.idx_zVm = [];

www.manaraa.com

50

APPENDIX B. MATLAB CODE FOR DC SE

MATPOWER provides MATLAB code within the function test se that can be used to perform AC SE.

However, in order to perform DC SE, I had to develop my own code that could be integrated into the code

already provided by MATPOWER, specifically within the subfunction doSE [41]. Shown below is the code

I developed for obtaining the proper values of h(x) and H for DC SE as defined in Section 2.1 by replacing

the code in doSE that is used to update H every iteration for AC SE. Specifically, lines 82-136 of doSE,

from the computation of the estimated measurements to the computation of the H matrix, should be replaced

with the code included in this appendix.

As in Appendix A, we only consider the measurements of real power injections into the “from” and “to”

ends of bus branches in the code below in keeping with DC SE.

The variable i is used in the if statement below to track the number of iterations performed in doSE to

obtain the state estimates. Since H is constant for DC SE, it need only be defined during the first iteration.

The following section of code details the setup for defining the Jacobian H.

%DC SE code

if i == 1

na = size(Va); % Va is a double storing voltage phase states

na = na(1); % na defined as the number of voltage phase states

H = zeros(num_M,n+1); % Jacobian matrix setup with size num_M (number of

measurements) x n+1 (total number of buses; n is number of unknown

voltage phases)

sizezPF = size(idx.idx_zPF); % idx.idx_zPF is a double storing the indices

for real power flow measurements "from" buses

sizezPF = sizezPF(1); % sizezPF stores total number of real power flow

measurements "from" buses

www.manaraa.com

51

sizezPT = size(idx.idx_zPT); % idx.idx_zPT is a double storing the indices

for real power flow measurements "to" buses

sizezPT = sizezPT(1); % sizezPT stores total number of real power flow

measurements "to" buses

Each of the elements of the Jacobian H is defined in the next section of code included on the following page.

Recall from Section 6.4 that the elements of the Jacobian for DC SE are derivatives of the linear real power

flow equations with respect to the voltage phase state values. In this particular case, each of the elements in

the Jacobian H is defined in accordance with the following criteria:

• The measurement of each real power injection into a “from” (PF) or “to” (PT) bus corresponds to

a row in H

• Let the PF measurements correspond to rows 1...n0 of H, where n0 is the total number of PF

measurements

• Let the PT measurements correspond to rows n0 + 1...n of H, where n is the total number of PF

and PT measurements and n−n0 is the total number of PT measurements

• The voltage phase of each bus (θcol) corresponds to a column in H

• Let f designate the “from” bus of the transmission line on which each row’s measurement was

taken

• Let t designate the “to” bus of the transmission line on which each row’s measurement was taken

• For each PF measurement, the linear real power flow equation is hrow = B f t(θ f −θt)

• For rows 1...n0 of H, the element in each column is equal to ∂hrow
∂θcol

• For rows 1...n0 of H, all elements are zero except in columns f and t

• For rows 1...n0 of H, the element in column f is B f t

• For rows 1...n0 of H, the element in column t is -B f t

• For each PT measurement, the linear real power flow equation is hrow = Bt f (θt −θ f)

• For rows n0 +1...n of H, all elements are zero except in columns t and f

• For rows n0 +1...n of H, the element in column t is Bt f

www.manaraa.com

52

• For rows n0 +1...n of H, the element in column f is -Bt f

Note that the transmission line susceptance B f t or Bt f is equivalent to the imaginary component of the

admittance matrix (Y bus) element corresponding to the same “from” and “to” buses. Given the criteria from

the previous page, a Jacobian matrix for DC SE can be defined in MATLAB as follows:

fr = [];

tr = [];

for ia = 1:sizezPF

fr = f(idx.idx_zPF(ia));

tr = t(idx.idx_zPF(ia));

for l = 1:na

if fr == l

H(ia,l) = imag(Ybus(fr,tr));

elseif tr == l

H(ia,l) = -1*imag(Ybus(fr,tr));

end

end

end

fr = [];

tr = [];

for ia = 1:sizezPT

fr = f(idx.idx_zPT(ia));

tr = t(idx.idx_zPT(ia));

for l = 1:na

if tr == l

H(ia+sizezPF,l) = imag(Ybus(tr,fr));

elseif fr == l

H(ia+sizezPF,l) = -1*imag(Ybus(tr,fr));

end

end

www.manaraa.com

53

end

H = H(:,nonref); % Removes the column for the reference bus and places the

columns of H in the correct order for use in doSE

end

In addition to defining the Jacobian matrix, H, we also need to define each of the linear power flow equations,

h(x), in terms of the voltage phase states during each iteration of doSE. Recall from Section 2.1 that the

goal of SE is to find the best fit for z−h(x) = e. Since the real power flow equations are simplified for DC

SE, we need to update h(x) accordingly. This can be done by following the criteria given below:

• The measurement of each real power injection into a “from” (PF) or “to” (PT) bus corresponds to

a row in h(x)

• Let the PF measurements correspond to rows 1...n0 of h(x), where n0 is the total number of PF

measurements

• Let the PT measurements correspond to rows n0 +1...n of h(x), where n is the total number of PF

and PT measurements and n−n0 is the total number of PT measurements

• Let f designate the “from” bus of the transmission line on which each row’s measurement was

taken

• Let t designate the “to” bus of the transmission line on which each row’s measurement was taken

• For each PF measurement, the linear real power flow equation is hrow = B f t(θ f −θt)

• For rows 1...n0 of h(x), the element in each row is equal to B f t(θ f −θt)

• For each PT measurement, the linear real power flow equation is hrow = Bt f (θt −θ f)

• For rows n0 +1...n of h(x), the element in each row is equal to Bt f (θt −θ f)

The corresponding code in for MATPOWER is as follows:

na = size(Va); % Va is a double storing voltage phase states

na = na(1); % na defined as the number of voltage phase states

hx = zeros(num_M,1); % Linear real power flow equation double setupt with

size num_M (number of measurements) x 1

www.manaraa.com

54

sizezPF = size(idx.idx_zPF); % idx.idx_zPF is a double storing the indices

for real power flow measurements "from" buses

sizezPF = sizezPF(1); % sizezPF stores total number of real power flow

measurements "from" buses

fr = [];

tr = [];

for ia = 1:sizezPF

fr = f(idx.idx_zPF(ia));

tr = t(idx.idx_zPF(ia));

hx(ia) = imag(Ybus(fr,tr))*(Va(fr)-Va(tr));

end

sizezPT = size(idx.idx_zPT); % idx.idx_zPT is a double storing the indices

for real power flow measurements "to" buses

sizezPT = sizezPT(1); % sizezPT stores total number of real power flow

measurements "to" buses

fr = [];

tr = [];

for ia = 1:sizezPT

fr = f(idx.idx_zPT(ia));

tr = t(idx.idx_zPT(ia));

hx(ia+sizezPF) = imag(Ybus(tr,fr))*(Va(tr)-Va(fr));

end

end

z_est = hx; % z_est is the double used to store the values of hx in doSE

	Efficient state estimation via inference on a probabilistic graphical model
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. INTRODUCTION
	1.1 Background
	1.2 Our Contributions
	1.3 Organization
	1.4 My Own Contributions

	2. STATE ESTIMATION
	2.1 State Estimation On DC And AC Flow Models
	2.2 Existing SE Solvers
	2.3 A 3-bus Example
	2.4 Discussion

	3. PROBABILISTIC GRAPHICAL MODEL
	3.1 Markov Networks, Node Potential, And Edge Potential
	3.2 Inference Via Belief Propagation

	4. STATE ESTIMATION: A PGM PERSPECTIVE
	4.1 Modeling A Power Grid As A Graph
	4.2 Transforming SE To PGM Problem
	4.2.1 Transforming DC SE To Inference Problem On A PGM
	4.2.2 Transforming AC SE To Inference Problem On A PGM
	4.2.3 Example

	4.3 Solving The PGM Problem Via Gaussian Belief Propagation
	4.3.1 Gaussian Belief Propagation
	4.3.2 Speeding Up Message-Passing In GBP
	4.3.3 Example

	4.4 Existing SE Solvers Versus Our Proposed PGM/GBP Solver
	4.5 Complexity Analysis

	5. PERFORMANCE EVALUATION: PGM
	5.1 Experimental Setup
	5.2 AC SE Versus AC PGM: State Estimates
	5.3 AC SE Versus AC PGM: Running Time

	6. APPLICATION: DEFENSE AGAINST FALSE DATA INJECTION ATTACKS
	6.1 State Estimation (SE) And Bad Data Detection (BDD)
	6.2 False Data Injection Attacks (FDIAs)
	6.3 Defense Against FDIAs
	6.4 AC-Based Defense

	7. PERFORMANCE EVALUATION: DEFENSE AGAINST FDIA
	7.1 Experimental Setup
	7.2 Susceptibility Of DC SE To FDIA
	7.2.1 Successful Attack Ratio When Attacker Has Full Access To All Meters
	7.2.2 Meters Needed For A Successful Attack

	7.3 AC SE/PGM Defense Against FDIA

	8. CONCLUSION
	REFERENCES
	A. MATLAB METER MEASUREMENT GENERATION
	B. MATLAB CODE FOR DC SE

